ARMY RESEARCH LABORATORY

Design and Analysis of a Parallel,
Real-Time, Automatic Target
Recognition Algorithm

by Philip David, Philip Emmerman,
and Sean Ho

i

ARL-TR-1112 September 1996

9961011 038

Approved for public release; distribution unlimited.

DYIC QUALITY JTWBFBOTED 1

The findings in this report are not to be construed as an official Department of
the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the
originator.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of inforrnation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1996 Final, from March 1993 to March 1994

4. TITLE AND SUBTITLE

Design and Analysis of a Parallel, Real-Time, Automatic Target
Recognition Algorithm

6. AUTHOR(S)

Philip David, Philip Emmerman, and Sean Ho

5. FUNDING NUMBERS

PE: 62120A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Attn: AMSRL-IS-SA

2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-1112

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Army Artificial Intelligence Center

Attn: SAIS-Al
107 Army Pentagon
Washington D.C. 20310-0107

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

AMS code: 612120.H1600
ARL PR: 360P61

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Automatic target recognition (ATR) is made difficult by the variety of conditions under which an

ATR system may be required to operate. Because the number of operations

required to execute a

particular ATR algorithm can vary greatly from one scenario to another, a fixed hardware and soft-
ware architecture usually will not be able to execute a given ATR algorithm in all required scenarios
within some given real-time constraints. A solution to this problem is to use a scalable architecture.
The hardware and software of such an architecture can easily be scaled to meet the processing

requirements of a particular scenario. This report describes a scalable archi
developed that implements a real-time ATR algorithm.

tecture system that we

14. SUBJECT TERMS

ATR, scalable architecture, parallel processing

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Contents

Lo INEFOAUCHON ..ottt ss s be s senans 5
2. Scalable ArchiteCtUres ..ot s 5
3. Operating SYStem ..ot 7
4. ATR APPLICAIONonmiriit ettt 7

4] ARTM ALGOTIIANM ...ttt sttt sa s s sae et et s st e e ns s enabstons 7
4.2 Parallel ARTM AIGOTItRAML.............cmueeiiriiiieisteieiee ettt st as 8
5. ANALYSIS ..oovieiiiiicii bbbttt s 10
6. Performance ... s b 14
7. CONCIUSIONS ..ottt bbb e s b e sen b s nsnanenes 15
ACKNOWIEAGIMENL ...ttt aaes 16
REfEIOIICES ..ottt bbb bbb e s 16
DHSHHDULION ...ttt 17

Figures
1. SYSIEIM OVEIVIEW ..ottt ettt s et s s ne st sttt 6
2. The overall architecture of the quad-C40 DSP boardccocomuemeurineienieicincinnnnnansd S 6
3. A four-class deCiSION LT ...ttt st s ses s s aes 8
4. Assignment of piXels t0 PIOCESSOIScovuiiviireririiiieeiienistni ettt 9
5. A four-level processor interconnection NEtWOIKccocvveeieinininiiiite s 10
6. Speedup of the parallel ARTM algorithm as a function of the number of processors 13
7. Speedup of distributed and shared memory algorithmsc..ccoiooecciieieeen 15
Tables

1. Number of processors required to maintain a fixed performance level

aS IMNAZE SIZE INCTEASES ...veveuiieiirireinieteeeeete sttt b s s s s s e b e s e e b e e ssn s na s st ssasnsnas 13
2. Elapsed time and speedup for the shared memory algorithm ..o 14
3. Elapsed time and speedup for the distributed memory algorithmccoooervrvrieiivcnnnnnnne 14

1. Introduction

Automatic target recognition (ATR) is the process of locating and recog-
nizing targets in data generated by one or more sensors. ATR is made dif-
ficult by the variety of conditions under which an ATR system may be
required to operate (e.g., targets may be occluded; targets may have low
target-to-background contrast; there may be a necessity to recognize a
variety of targets; target appearance can vary greatly with different view-
points; natural and manmade clutter may be present in the scene, etc).
Therefore, computation required to execute a particular ATR algorithm
can vary greatly from one scenario to another, and a fixed hardware and
software architecture will not usually be able to execute a given ATR algo-
rithm in all required scenarios within some given real-time constraints.

A solution to this target-recognition problem is to use a processing archi-
tecture that can easily be scaled to meet the processing requirements of a
particular scenario. A scalable architecture is a computer architecture that
can deliver an increase in performance proportional to an increase in its
size; however, efficiently using such an architecture requires a software
architecture that scales along with the hardware.

For our work, we employed the ATR Relational Template Matching
(ARTM) algorithm,* which uses a hierarchy of target silhouette models to
detect and recognize targets in infrared (IR) imagery. We converted the
original, sequential algorithm into a parallel, scalable algorithm that runs
on a scalable architecture consisting of Texas Instruments TMS320C40
processors. In this report, we describe how we decomposed, distributed,
and ran the ATR algorithm on the C40s, using their parallel, high-speed,
interprocessor communication links to approach maximum system
performance.

The report is organized as follows. First, we describe the system’s hard-
ware architecture and its operating system. We then present a description
of the ARTM algorithm and its parallel implementation, followed by an
analysis of how well the algorithms scaled when they were applied to
more difficult problems. We conclude with a discussion of the system’s
performance.

2. Scalable Architectures

Recent advances in hardware and software make the development of low-
cost, scalable architectures more practical. At the digital signal processor
(DSP) chip level, vendors are adding more powerful input/output (I/O)
and interconnect features that allow designers to combine multiple DSPs
more efficiently and with greater flexibility. At the board level, vendors are
packaging multiple DSPs on single boards, using a broad range of point-
to-point and shared-memory configurations.

*The ARTM algorithm was developed by Mathematical Technologies, Inc., under sponsorship of the Army Night
Vision and Electronic Sensors Directorate and the Army Research Laboratory.

Figure 1. System
overview.*

Figure 2. The overall
architecture of the
quad-C40 DSP board.*

The scalable system that runs the automatic target recognition (ATR) code
is a heterogeneous system that consists of a general-purpose, single-board
computer (SBC) and a DSP subsystem. Both are VME (VERSAmodule
Europe) bus-based, commercial off-the-shelf (COTS) computer boards (see
fig. 1). The SBC uses a 25-MHz Motorola 68040 processor. This board ser-
vices requests (e.g., I/O to a remote file system) from the DSP subsystem.
During software development and testing, binary codes and data are for-
warded from the Unix-based development environment to the DSP via

this SBC.

The second board in the system is a quad-C40 board that consists of four
40-MHz TI TMS320C40 DSP central processing units (CPUs). Each DSP
CPU is capable of performing 275 million operations per second (MOPS),
and has a maximum data throughput of 320 Mb/s, including 20 Mb/s
throughput from each of its six interconnected communications ports (see
fig. 2). Three of six communication ports on each C40 can be externally
connected to other C40s. In doing so, scalability can be achieved by adding
C40 boards to the system as needs change. Another important feature of
the C40 is its use of direct memory access (DMA), which permits data to be
transferred between memories without the intervention of the DSP’s CPU
[1,2]. The quad-C40 board has 2 Mb of global static random access memory
(SRAM) and 2 Mb of SRAM for each of the four processors.

SUN | TCP-IP |[6

R

<

Protocol 15

i [P czz z
P -
I Local || Local | ' {""222222771 E
P11 |sRAM||sRaM| | i i *
[T — i comm
port
DSP1 DSP2
Global Lo - i
EEPROM L4
. RS-232
A7
v
N
I iJTAG l
20 ,l \‘
Global == 7
SRAM DSP4 DSP3
Ext
v L 1
R i — comm
v : i i SRAM| | SRAM :. port
M| | VMEbus L ibveyerermreye AT
E H interface | | o

* Dashed lines represent the parallel communication ports.

i 3. Operating Systelh

Since the host SBC (68040) directs and synchronizes all tasks run on the
DSP board and other boards on the VME bus, vxWorks,* a real-time multi-
tasking operating system, is run on the SBC. In order to minimize the time
that is spent in debugging and porting the ATR code from the Unix devel-
opment environment to the DSP platform and to preserve as much of the
original code as possible, we required a Unix-compatible DSP operating
system (OS). It was necessary that the OS provide the basic features of a
real-time operating system, in addition to making the application easily
portable to other DSP systems in the future without modifying the
already-developed ATR code. We selected SPOX, which also provides
such features as dynamic memory allocation from multiple memory seg-
ments and a C standard I/O library. The C standard I/O server allows the

~ host server to communicate with SPOX tasks running on the DSP board

with C standard library functions such as fopen(), printf(), and scanf() [3].

4. ATR Application

4.1

ARTM Algorithm

The ARTM algorithm is a model-based, target-recognition algorithm that
consists of an offline algorithm design process and an online target-
recognition process [4,5]. The offline process uses CAD models to con-
struct a decision tree of templates that are matched to imagery during the
online process. Each node in the decision tree represents a test for the pres-
ence of a target silhouette boundary. The tree implements a coarse-to-fine
search of the target-type/target-pose search space. Tests at the higher lev-
els in the tree are very general in that they test for the presence of target sil-
houette boundaries that could have been generated by any of a number of
types of targets in a wide range of poses. Tests at the lower levels in the
tree, in contrast, test for the presence of very specific target silhouette
boundaries that could only have been generated by single types of targets
in very limited poses. Figure 3 illustrates a sample decision tree. The tests
are “relational,” in that, rather than trying to recognize each target’s sil-
houette independent of all other target silhouettes, the tests focus on
aspects of the target silhouettes that differentiate the various targets.

The online target-recognition process applies the tests in the decision tree
to each pixel of the image. The test associated with the root node of the
decision tree is first applied to each pixel in the image. If a pixel passes this
test, the tests associated with the node’s “children” are applied to that
pixel, and so on, until a terminal test has passed (meaning a target has
been recognized at that pixel) or all tests fail (meaning that there is no
target at that pixel). Because the center of a target can be located at any
pixel in the image, this tree search is carried out at each pixel in the image.

* Produced by Wind River Systems.
¥ Produced by Spectron Microsystems.

Figure 3. A four-class

decision tree.*

4.2

AR
O D &

* To pass a node’s test, a target’s silhouette boundary
must lie in the dark region of the node’s template.

The only difference in the tests that are applied at the different nodes in the
decision tree is that the target silhouette boundaries differ from node to
node: the lower a node is in the decision tree, the more constrained the
target-boundary test becomes. A target silhouette boundary exists at a
pixel when the region around that pixel contains a sufficient number of
edge points along the boundary of the associated target silhouette tem-
plate. See [4] for more details.

Parallel ARTM Algorithm

As described in the previous section, the sequential ARTM algorithm car-
ries out the same search algorithm at each pixel in the image. The algo-
rithm is, therefore, inherently parallel. Our parallel implementation is as
follows.

A copy of the image to be processed is first sent to each processor, and an
assignment is made to each processor as to which pixels in the image it
should examine. Each processor then independently applies the ARTM
algorithm to its assigned set of pixels. When all processors have finished
their tasks, the target regions found by each are merged into a single,
consistent set of target regions.

In a system consisting of p processors, it is not possible to simply divide an
image into p “blocks” (one for each processor) and expect a significant
speedup of the algorithm, because only a few regions of the image contain
targets or target-like clutter in a typical IR image. In the ARTM algorithm,
much more computation is required in regions of the image containing tar-
gets and target-like clutter than in regions without targets. With this
simple block-partitioning of the image, the few processors that receive
image blocks containing targets will be busy, while the majority of the
processors will quickly become idle.

To ensure good load balancing, it is essential to assign each processor
roughly the same number of target (and target-like clutter) pixels. To this
end, we assigned every pth column of pixels to the same processor, as
illustrated in figure 4. When the number of processors in a system is sig-
nificantly greater than the expected number of pixels across a target or

Figure 4. Assignment
of pixels to
processors.*

Processor number:

* In this example, p = 4.

target-like clutter, even this load-balancing scheme is not effective—some
processors will receive no target pixels and will, therefore, spend much of
their time idle. In such a case, it is easy to devise other schemes in which
the pixels assigned to each processor are uniformly distributed over the
image, which will uniformly distribute the target pixels to the p processors.

We demonstrated above that the ARTM algorithm is highly parallel. How-
ever, to obtain an efficient parallel solution, the processors must also have
a fast mechanism to share program data (which, in our system, includes
images, target silhouette templates, and target regions of interest). We
experimented with two mechanisms for sharing data: shared memory and
message passing. The performance of the system using each of these
mechanisms is described in section 6. Since, in many processors, the use of
shared memory is very limiting due to memory-contention problems, we
concentrated our efforts on the message-passing architecture.

In our message-passing implementation, processors need only communi-
cate during initialization (to obtain a copy of the image to be processed)
and during the last stage of the algorithm (where the targets detected by
each processor are merged into a single, consistent set of target detections).
These communications can be achieved most efficiently when the proces-
sors are organized in the hierarchy shown in figure 5. This organization is
a result of the physical organization of the quad-C40 board, described ear-
lier: each board contains four processors, each with three internal commu-
nication ports (linked to processors on the same board), and three external
communication ports (linked to processors on other boards). The quickest
way to broadcast a message with this architecture is to use the following
procedure.

Figure 5. A
four-level
processor
interconnection
network.*

5. Analysis

10

Level

*Each circle represents a processor. Solid lines depict connections between internal
communication ports. Dotted lines depict connections between external communica-
tion ports. Images propagate from the top level to the bottom. Results propagate from
the bottom level to the top.

One processor on each board receives messages from another board via an
external communication link. When the processor receives the message, it
sends it to the other three onboard processors (using the internal
communication links), and to processors on two different boards (using
the external communication links). The processors that are initialized via
the internal communication links then send the message out (using exter-
nal communication links) to three processors on three different boards.

In this section, we analyze the scalability of the parallel ARTM algorithm
for the average case behavior. There are many performance metrics that
can be used to measure the scalability of a parallel system [6]. The system’s
speedup as a function of problem size and number of processors is the
metric that we use here. Our problem size is given by n, where the size of
the image to be processed is n X n pixels. The speedup, S, of a parallel sys-
tem is defined as the ratio of the time required to run on one processor, T;,
to the time required to run on p processors, Tp :

24
T
The following analysis assumes that the parallel ARTM algorithm’s load-
balancing scheme enables all processors to finish the decision tree searches
at the same time, so that the processors experience no idle time between
the end of the search and the start of target list merging. For this to occur,
each processor must be assigned roughly the same number of target/
clutter and nontarget/nonclutter pixels. This is possible when the number
of target/clutter pixels is much larger than the number of processors in the

system.

S (1)

Our analysis of speedup is based on both the run-time behavior of an
actual system and a high-level complexity analysis of the algorithm. We
describe the algorithm in terms of a number of high-level, basic operations.
The time required to execute each type of operation is determined by
measuring the run time of the operation on our four-processor system.
Using this timing data, we can generate an equation for the run-time com-
plexity of the algorithm for any problem size and number of processors
and, using this formula, we can calculate the system’s speedup. The basic
operations and their measured run times are as follows.

Transfer an image between two processors that have a direct connection in the net-
work. Pixels are transferred at a rate of ¢; = 1.6 x 107 s per pixel. (This rate
actually varies slightly with the image size, but we assume that it is
constant.)

Perform the decision tree search on a single pixel in the image. The time to per-
form this operation can vary greatly from one pixel to the next, but for our
average-case complexity analysis, we used the average value of ¢, = 4.3 X
103 s per pixel.

Cluster pixels into target detections. If we assume that the target and clutter
rate per pixel is constant, the clustering rate per original image pixel will
also be constant. We measured this rate to be approximately c; = 6.1 x
1078 s per pixel.

Transfer a list of target detections between two processors that have a direct
connection in the network. The size of this list depends on the number of
targets and the amount of clutter in the image. Because the ARTM algo-
rithm never detects more than a few targets or false alarms in an image, we
can assume that the size of this list is essentially constant; therefore, any
list of target detections can be transferred in constant time, ¢y = 1.0 x 103s.

Merge two lists of target detections into a single, consistent list of target detec-
tions. Because we assume that the length of a list of target detections is con-
stant, the time to combine two lists (c5) will also be constant. We estimate
that ¢; =3.0x 1073 s.

Using the basic operations detailed above, we can calculate the run times
of the sequential and parallel algorithms. The seczluential algorithm con-
sists of a tree search (time c,) for each of the n< pixels, plus the pixel
clustering (time c3) for n? pixels. The sequential run time is, therefore,

T, = (c, + ca)n?.)

If we let L(p) denote the number of levels in the processor interconnection
hierarchy containing p processors, for the parallel algorithm we have the
following run times.

Image propagation time—Each processor may need to send the image to up
to five lower-level processors in the interconnection network. The total
image propagation time is, therefore, 5c¢;n? s for each of the L(p) - 1
propagation steps.

11

12

Tree search time—The tree search time is ¢, s for each n2/p pixels.
Pixel clustering time—The pixel clustering time is c3 s for each n?/p pixels.

Results propagation time—A processor may need to receive target-detection
lists from up to five lower-level processors in the interconnection network.
Because a processor can read from only one of its communications chan-
nels at a time, results propagation is 5¢4 s for each of the L(p) - 1 propaga-
tion steps.

Target list merge time—A processor can have up to six target lists that must
be merged (counting its own). Since the lists are merged in pairs, five
merges may be required; therefore, the merge time is 5c; s for each of the

L(p) - 1 merge steps.

The total parallel run time is then

= (L(p) - 1) X (5cyn% + 5cy + 5cg) + (n2/p) X (cy + ¢3) (3)
and the speedup as a function of n and p is
.- (c2+ c3)n2

(L(p) - 1) X (5c1n2 +5c4 + 5c5) + (nz/ p) X (cz +c3) @

‘To evaluate the equations above, we need an expression for L(p), the num-

ber of levels in the interconnection network containing p processors. (For
our purposes, we can assume that all levels in the interconnection network
are full.) Let 74(k) denote the number of processors of degree d (i.e., that
have d children) at level k in the network. From figure 3, we can see that

rf0)=1, rf0)=0,

rslk) = 2rs(k = 1) + 3r5(k— 1) o1 ©)

Solving these linear recurrence relations, we get
ra(k) = Brocf + Brorh
k=21, (6)
rfk) = Baor} 1 + By~

where

o =1+V10 , a2=1—~/_,

ﬂ _V 0+1 ﬂ -1

1 2/ 2= 2/ ’ (
ﬁ 3v10 +3 ﬁ 3\/ -3

3720 P4 M0

Figure 6. Speedup of
the parallel ARTM
algorithm as a function
of the number of
processors.

Table 1. Number
of processors
required to

“maintain a fixed

performance

level (<1 s run
time) as image
size increases.

The number of processors in level k of the network is then r5(k) + r5(k), and
L(p) can be calculated by the expression

L(p) = min ;g; (r3(k) + r5(k)) >p| . (8)

Figure 6 shows the theoretical speedup of the parallel ARTM algorithm as
a function of p for a number of values of n. The figure shows that larger
speedups can be obtained as the problem size increases. For a given prob-
lem size, however, the overhead due to interprocessor communications
limits the obtainable speedup when the number of processors is increased.
Table 1 presents an example of how the system can be “scaled” to maintain
an approximately fixed level of performance (i.e., constant run time) as the
image size increases. The number of processors required is roughly
proportional to the number of pixels in the image.

1000
Image size
—{—N=16
g ——N=32
g —O0—N=64
& —a— N =128
—O— N =256
—— N =512
1 10 100 1000 10000
Number of processors
Image Run time No. of
size (s) processors
8x8 0.275 1
16x16 0.572 2
32x32 0.902 5
64 x 64 0.975 19
128 x 128 0.991 79
256 x 256 0.999 390

13

6. Performance

Table 2. Elapsed
time (in seconds) and
speedup for the
shared memory
algorithm. (Shown
as elapsed time/
speedup.)

Table 3. Elapsed
time (in seconds)
and speedup for the
distributed memory
algorithm.

14

Because it was easy to use, we chose shared memory for interprocessor
communications in our first parallel implementation of ARTM. All shared
data structures were stored in a single memory that was shared by all pro-
cessors. Table 2 lists the elapsed run times and speedups for a number of
test images when the algorithm is run on one to four processors. As is
apparent from the table, contention for the shared memory becomes a
problem when running with three and four processors, and severely limits
the algorithm’s speedup.

Our second implementation of ARTM performed message passing in a
distributed memory architecture. After the first processor received the
image data from the host, it broadcasted the data to the other processors in
the system via its parallel communication ports. Table 3 lists the elapsed
run times, the average speedups, and theoretical speedups for this system.
Here, we obtained a nearly linear speedup of the algorithm. Figure 7 com-
pares the speedups of the shared and distributed memory architectures.

Number of processors
1 2 3 4

metd0900 78.2/1 42.3/1.8 34.7/2.3 32.7/2.4
metd0909 107.5/1 56.6/1.9 46.4/2.3 42.7/2.5
metd1268 133.3/1 70.7/1.9 59.1/2.3 545/2.4
metd2523 121.0/1 63.9/1.9 52.2/2.3 48.8/2.5
metd2656 116.2/1 61.6/1.9 51.7/2.2 475/2.4
metd3241 83.8/1 44.8/1.9 37.7/2.2 34.6/2.4
metd3321 84.7/1 45.3/19 37.1/2.3 34.5/2.5
metd3785 97.1/1 51.7/1.9 44.0/2.2 40.3/2.4
metd4446 124.0/1 65.7/1.9 55.7/2.2 50.9/2.4
metd5045 79.7/1 425/1.9 35.3/23 33.1/24
metd5264 88.6/1 48.3/1.8 40.1/2.2 38.0/2.3

Image

Average
speedup 1.0 19 2.2 24
Number of processors
Image 1 2 3 4

metd0900 59.4/1 29.9/2.0 20.3/2.9 15.3/3.9
metd0909 75.6/1 37.8/2.0 25.7/29 19.3/3.9
metd1268 91.1/1 45.6/2.0 30.6/3.0 23.0/4.0
metd2523 849/1 42.3/2.0 28.3/3.0 21.4/4.0
metd2656 79.6/1 39.7/2.0 26.8/3.0 20.3/3.9
metd3241 58.1/1 29.3/2.0 19.7/2.9 14.9/3.9
metd3321 59.5/1 30.0/2.0 20.2/29 15.3/3.9
metd3785 66.4/1 33.4/2.0 226/29 16.8/4.0
metd4446 84.3/1 42.0/2.0 284/3.0 21.3/4.0
metd5045 55.4/1 27.8/2.0 189/29 14.4/3.8
metd5264 66.3/1 33.4/2.0 227/29 17.2/3.9

Average

speedup 1.0 2.0 29 3.9
Theoretical

speedup 1.0 1.998 2.996 3.993

Figure 7. Speedup of
distributed and shared
memory algorithms.

53 Ideal ---
e Dist. o
g Shared ®m
4]

Number of processors

7. Conclusions

For this study, we parallelized the ARTM ATR algorithm and imple-
mented it on a scalable architecture of C40 processors. We demonstrated
the scalability of the system empirically for a small number of processors,
and theoretically for larger numbers of processors. Using these results, an
estimate of the number of processors required to obtain a given level of
performance in a particular application was derived.

The commercial, off-the-shelf hardware used in this system and the open-
architecture nature of the hardware and software makes the system
affordable and easy to work with. As such, it is appealing to look at other
applications that might benefit from the use of scalable architectures.
We are currently considering the feasibility of implementing a multiple-
hypothesis tracker [7] on this system. There are several broad battlefield
applications for which a scalable architecture approach might also be
feasible, including:

Terrestrial, atmospheric, and space-borne sensor images merged with digi-
tal map and entity (friendly and enemy) data to provide realistic fly-
through simulations directly to the battlefield prior to tactical engagement.

The deployment of coordinated, autonomous air and ground robotics pro-
viding services such as real-time reconnaissance, surveillance, and target
acquisition; decoy and mine detection and clearance; and electronic
warfare.

The fusion of all available sensor information for real-time situation
assessment and awareness, combined with advanced human-computer
interfaces (e.g., visualization, natural language, intelligent database access)
to enable rapid assimilation of this critical information.

A mobile, distributed command and control network that supports real-
time, worldwide teleoperations. (A simple example of this network is the
telemedical application with which Conus medical experts are interac-
tively supporting medics in field operations).

Adaptive, hybrid, terrestrial-satellite communications networks to support
items 1 through 4.
15

Acknowledgment

References

16

This research was partially supported by the U.S. Army Artificial Intelli-
gence Center.

. K. Hwang and F. Brigg, Computer Architecture and Parallel Processing,

McGraw-Hill, Inc. (1984), 121-123.

. Considerations in Choosing a High-Performance Floating-Point DSP, technical

white paper by Texas Instruments, Inc. (1993), 7.

. SPOX-LINK Programming Guide, Spectrum Microsystems, Inc. (1993), 11-

13.

. A. Kramer, D. Perschbacher, R. Johnston, and T. Kipp, Relational Template

Matching for FLIR Automatic Target Recognition, Proc. SPIE, Vol. 1957 (1993).

. S. Savitt and R. Suresh, ATR Relational Template Matching, report prepared

for the Army Research Laboratory by Alliant Techsystems, Inc., and
Mathematical Technologies, Inc., under contract DAAB07-90-C-F427
(September 1993).

. A.Grama, A. Gupta, and V. Kumar, Isoefficiency: Measuring the Scalability of

Parallel Algorithms and Architectures, IEEE Para. Distrib. Tech. (August
1993).

. D. B. Reid, An Algorithm for Tracking Multiple Targets, IEEE Trans. Auto.

Cont. (December 1979), 843-854.

Admnstr

Defns Techl Info Ctr

Attn DTIC-OCP

8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Hdgqtrs Dept of the Army

Attn DAMO-FDQ MAJM McGonagle
400 Army Pentagon

Washington DC 20310-0460

US Army Artificial Intelligence Ctr
Attn SAIS-AI

107 Army Pentagon

Washington DC 20310-0107

US Army Rsrch Lab

Attn AMSRL-IS B Broome

Attn AMSRL-WT-WC C Shoemaker
Attn AMSRL-WT-WC G Haas

Attn AMSRL-WT-WC J Bomnsetin
Attn AMSRL-WT-WC T Huag

Aberdeen Proving Ground MD 21005-5067

Distribution

US Army Rsrch Lab

Attn AMSRL-IS D Hillis

Attn AMSRL-IS L Tokarcik :

Attn AMSRL-IS P Emmerman

Attn AMSRL-IS-PA M Salonish

Attn AMSRL-IS-PA S Ho (6 copies)

Attn AMSRL-IS-SA J DeHart

Attn AMSRL-IS-SA L Sadler

Attn AMSRL-IS-SA P David (12 copies)

Attn AMSRL-IS-SA S Balikirsky

Attn AMSRL-IS-SA T Mills

Attn AMSRL-OP-SD-TA Mail & Records
Mgmt

Attn AMSRL-OP-SD-TI Tech Lib (3 copies)

Attn AMSRL-OP-SD-TP Tech Pub (5 copies)

Attn AMSRL-SE-RS T Kipp

Attn AMSRL-SE-RT M Hamilton

Adelphi, MD 20783-1197

17

